
生成模型概述
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➢根本问题：给定海量数据样本（如人脸图片），如何学习其背后那个极其复杂的高维

概率分布 P(image)？

➢一旦学到这个分布，我们就能评估新样本的“真实性”（密度估计），更能从中采样，

创造出全新的、逼真的样本（生成）

什么是生成
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➢生成模型

➢给定一组真实数据样本 {𝑥1, 𝑥2, . . . , 𝑥𝑛}，它们被假设是从一个未知的真实数据分布 𝑃𝑑𝑎𝑡𝑎(𝑥)中

采样得到的

➢生成模型 (Generative Model) 的任务是学习一个模型 𝑃𝑚𝑜𝑑𝑒𝑙(𝑥)，使其尽可能地逼近 𝑃𝑑𝑎𝑡𝑎(𝑥)

➢为什么要生成

➢理解数据。 一个好的生成模型抓住了数据的本质结构与变化规律

➢创造数据。一旦学到了 𝑃𝑚𝑜𝑑𝑒𝑙 ，就可以从中采样，生成全新的、与真实数据风格一致的数据。

“创造力”

➢应用: 图像合成、风格迁移、数据增强、超分辨率、药物发现等

➢传统方法的挑战

➢直接对高维数据的 𝑃𝑑𝑎𝑡𝑎(𝑥) 进行最大似然估计（MLE）通常是极其困难或不可行

为什么要生成模型？



4

➢显式密度建模 (Explicit Density Modeling - VAE)

➢尝试构建一个带有参数 𝜃 的模型p𝜃(x) ，并直接优化它，使其逼近真实的数据分布（通常通

过最大化对数似然 log p𝜃(x)。但由于 p(x) 形式复杂，我们转而优化其一个可计算的下界

（ELBO）。

➢隐式密度建模 (Implicit Density Modeling - GAN)

➢放弃直接定义和优化 p𝜃(x)。而是构建一个“生成器”，它能直接从一个简单分布中采样并

变换成目标样本。不关心 p𝜃(x) 的具体形式，只要求它生成的样本“看起来是真的”。通过一

个“判别器”进行对抗训练，间接地让生成分布逼近真实分布。

➢基于马尔可夫链的采样 (Markov Chain-based Sampling - Diffusion)

➢将“一步生成”分解为一系列极其简单的“小步去噪”问题。模型学习的不是直接生成，而

是从纯噪声开始，通过一个逐步去噪的马尔可夫链，最终采样得到一个清晰的样本

生成的技术路线



数学基础
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➢大写字母：随机变量

➢如，图像随机变量𝑋, 表示抽象图像的概念, 而非某一张具体的图像

➢𝑃(𝑋) ：随机变量 𝑋 的概率分布

➢小写字母：随机变量的一个具体实现

➢如， 𝑥 表示某一张具体图片，看作随机变量 𝑋 的一次具体采样的结果

➢𝑃(𝑋 = 𝑥) ：随机变量 𝑋 采样得到 𝑥 的概率数值

➢概率密度函数 𝑃(𝑋) 代入具体数值 𝑥 的计算结果

➢𝒩 𝜇, 𝜎2 表示均值为 𝜇, 方差为 𝜎2 的高斯分布

➢请注意，不是𝒩(𝜇, 𝜎)

概率与分布
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➢事件：一个特定的结果或一组结果

➢样本空间：所有可能结果的集合

➢概率：表示某个事件发生的可能性

𝑃(𝐴) =
事件 A 发生的方式数

样本空间的总方式数

➢概率是一个数值，通常在 0 到 1 之间

概率
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➢条件概率

➢𝑃(𝐴, 𝐵) = 𝑃(𝐴 ∣ 𝐵)𝑃(𝐵) = 𝑃(𝐵 ∣ 𝐴)𝑃(𝐴)

➢边缘概率

𝑝(𝐵) = ∫𝐴𝑝(𝐴, 𝐵)𝑑𝐴

➢求期望，去除无关变量的操作： E𝑝 𝑥1,𝑥2,…,𝑥𝑇 𝑓 𝑥𝑖 = E𝑝 𝑥𝑖 𝑓 𝑥𝑖

➢

E𝑝 𝑥1,𝑥2,…,𝑥𝑇 𝑓 𝑥𝑖

= ∫𝑥1,𝑥2,…,𝑥𝑇
𝑝 𝑥1, 𝑥2, … , 𝑥𝑇 𝑓 𝑥𝑖 𝑑𝑥1𝑑𝑥2…𝑑𝑥𝑇

= ∫𝑥𝑖
∫𝑥1,…,𝑥𝑖−1,𝑥𝑖+1…,𝑥𝑇

𝑝 𝑥1, 𝑥2, … , 𝑥𝑇 𝑑𝑥1…𝑑𝑥𝑖−1𝑑𝑥𝑖+1…𝑑𝑥𝑇
exclude 𝑥𝑖

𝑓 𝑥𝑖 𝑑𝑥𝑖

= ∫𝑥𝑖
𝑝 𝑥𝑖 𝑓 𝑥𝑖 𝑑𝑥𝑖 = E𝑝 𝑥𝑖 𝑓 𝑥𝑖

概率
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➢𝑝 𝑧 ∣ 𝑥

➢函数映射

➢给定𝑥，得到的𝑧概率𝑝 𝑧 ∣ 𝑥

➢推断/推理（本质/原因𝑥，推断现象/结果𝑧）

➢先验概率𝑝 𝑥

➢根据观察现象/结果𝑧，推断本质/原因𝑥。后验概率𝑝 𝑥 ∣ 𝑧

➢类条件概率函数

➢类别c的特征𝑥e的概率密度函数， 𝑝 𝑥 ∣ c

➢编码

➢给定𝑥，得到编码𝑧的概率𝑝 𝑧 ∣ 𝑥

➢解码/生成

➢给定编码𝑧，解码得到𝑥的概率𝑝 𝑥 ∣ 𝑧

条件概率



期望和采样
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➢概率密度函数 𝑝 𝑥 ，𝑥的期望

𝔼 𝑥 = ∫ 𝑥𝑝 𝑥 𝑑𝑥

➢（近似）数值计算时，选若干代表性的点 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛，得

𝔼 𝑥 ≈෍

𝑖=1

𝑛

𝑥𝑖 𝑝 𝑥𝑖 𝑥𝑖 − 𝑥𝑖−1

➢如果根据 𝑝 𝑥 采样若干个点 𝑥1, 𝑥2, … , 𝑥𝑛，那么

𝔼 𝑥 ≈
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖 , 𝑥𝑖 ∼ 𝑝 𝑥

➢记号

➢假设有一个连续型随机变量 𝑥 ,其概率密度表示为 𝑝 𝑥 。此时,函数 𝑓 𝑥 的期望值可以表示为

𝔼𝑝 𝑥 𝑓 𝑥 = ∫ 𝑓 𝑥 𝑝 𝑥 d𝑥
➢这种表示方法清晰地表明它是关于 𝑝 𝑥 的期望值

➢以此类推,关于概率分布 𝑞 𝑥 的期望值表示为

𝔼𝑞 𝑥 𝑓 𝑥 = ∫ 𝑓 𝑥 𝑞 𝑥 d𝑥

期望
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➢计算方式的主要区别

➢其一包含了概率的计算

➢另一个仅有𝑥的计算

➢𝑥𝑖从𝑝 𝑥 中依概率采样而来，概率大的𝑥𝑖出现的次数也多，采样的结果已经包含了𝑝 𝑥 信息

𝔼𝑥∼𝑝 𝑥 𝑓 𝑥 = න𝑓 𝑥 𝑝 𝑥 𝑑𝑥 ≈
1

𝑛
෍

𝑖=1

𝑛

𝑓 𝑥𝑖 , 𝑥𝑖 ∼ 𝑝 𝑥

期望 - 蒙特卡洛模拟
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➢衡量两个概率分布之间差异的一种方法是 KL 散度。当给定两个概率分布 𝑝 𝑥 和

𝑞 𝑥 时,当 𝑥 为连续型随机变量时,KL 散度

𝐷KL 𝑝 ∥ 𝑞 = ∫ 𝑝 𝑥 log
𝑝 𝑥

𝑞 𝑥
d𝑥

➢当 𝑥 为离散型随机变量时, 数学式如下所示。

𝐷KL 𝑝 ∥ 𝑞 =෍

𝑥

𝑝 𝑥 log
𝑝 𝑥

𝑞 𝑥

➢KL 散度具有以下特性:

➢两个概率分布的差异越大, KL 散度的值就越大;

➢KL 散度的值大于或等于 0 ,且仅当两个概率分布相同时,其值才为 0 ;

➢KL 散度是非对称的衡量指标,因此 𝐷KL 𝑝 ∥ 𝑞 和 𝐷KL 𝑞 ∥ 𝑝 的值不同。

KL 散度
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➢假设有一个概率分布,其形状由参数 𝜃 决定。当参数为 𝜃 时,获得数据 𝑥 的概率密度为

𝑝 𝑥; 𝜃 。

➢对于正态分布,可以将参数视为 𝜃 = {𝜇, 𝜎} 。

“最大似然估计” (Maximum Likelihood Estimation)
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➢样本 𝒟 = 𝑥 1 , 𝑥 2 , ⋯ , 𝑥 𝑁 每个数据都是基于概率分布 𝑝 𝑥; 𝜃 独立生成的。此时,

获得样本 𝒟 的概率密度

𝑝 𝒟; 𝜃 = 𝑝 𝑥 1 ; 𝜃 𝑝 𝑥 2 ; 𝜃 ⋯𝑝 𝑥 𝑁 ; 𝜃 =ෑ

𝑛=1

𝑁

𝑝 𝑥 𝑛 ; 𝜃

➢由于假定每个数据是独立生成的,因此获得 𝑁 个数据的概率密度等于每个数据的概率密度的乘

积。

➢𝑝 𝒟; 𝜃 表示当参数为 𝜃 时获得样本 𝒟 的概率密度。这个 𝑝 𝒟; 𝜃 也可以被看作以 𝜃 为参数

的函数,其定义式如下所示。

𝐿 𝜃 = 𝑝 𝒟; 𝜃

“最大似然估计” (Maximum Likelihood Estimation)
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➢𝐿 𝜃 = 𝑝 𝒟; 𝜃 = 𝑝 𝑥 1 ; 𝜃 𝑝 𝑥 2 ; 𝜃 ⋯𝑝 𝑥 𝑁 ; 𝜃 = ς𝑛=1
𝑁 𝑝 𝑥 𝑛 ; 𝜃

➢𝐿 𝜃 称为似然 (likelihood) 或似然函数 (likelihood function)

➢以参数 𝜃 为参数的函数,表示在给定参数 𝜃 的情况下,样本 𝒟 出现的概率密度。

➢最大似然估计，找到使似然 𝑝 𝒟; 𝜃 最大的参数 𝜃

➢如果使似然最大的参数是 ෠𝜃 ,那么当参数为 ෠𝜃 时,观测到样本的概率最大

➢也就是说,当参数为 ෠𝜃 时,模型最拟合样本。

➢其实最大似然估计进行的不是似然 𝑝 𝒟; 𝜃 的最大化,而是对数似然 log𝑝 𝒟; 𝜃 的最大

化

መ𝜃 = argmax
𝜃

෍

𝑛=1

𝑁

log 𝑝𝜃 𝑥 𝑛

“最大似然估计” (Maximum Likelihood Estimation)



模型表达
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➢函数

➢直接对应关系

➢概率

➢输入𝑥，生成𝑧的概率𝑝 𝑧 ∣ 𝑥

➢神经网络，拟合

➢函数

➢概率中的参数

模型编码或者解码的表示
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➢𝑧 = 𝑓 𝑥

➢直接对应关系，根据输入得到确定的输出

➢缺点

➢对已经有的数据的总结

➢没有考虑数据之间的关联，所以并不能生成新的数据

➢如果希望生成新的数据，那么模型需要考虑样本推断相邻区域的能力，因此，对应不

能只是一个点，应该是一片

➢因此，映射机制发展成概率和采样的生成机制

函数
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➢𝑝 𝑧 ∣ 𝑥 ：由𝑥得到𝑧的概率。𝑥参数，𝑧为随机变量

➢𝑝 𝑧 ∣ 𝑥 为𝑥到各个𝑧（ 没有唯一对应的𝑧）映射的概率（频率或者可能性）

➢𝑝 𝑧 ∣ 𝑥 值越大，𝑧和𝑥的相关性越高

➢和映射z = 𝑓 𝑥 形式对照

𝑧𝑚𝑎𝑥 = argmax
𝑧

𝑝 𝑧|𝑥

➢按照概率𝑝 𝑧 ∣ 𝑥 采样𝑧，记号：𝑧 ∼ 𝑝 𝑧|𝑥

➢采样得到𝑧：先采样一个𝑥，再依据概率𝑝 𝑧 ∣ 𝑥 采样得到𝑧

➢一个策略：采样1000次，得到1000个𝑧𝑖，这些𝑧𝑖符合概率𝑝 𝑧𝑖 ∣ 𝑥 分布，如果只要一个样本，

随机挑选一个

➢如果𝑝 𝑧 ∣ 𝑥 形式为高斯分布。给定𝑥，

➢𝑧的一个采样 =（高斯函数的均值）+ （随机生成一个标准正态噪声）* 方差

概率生成模型 - 条件概率𝑝 𝑧 ∣ 𝑥
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